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Preface 
This non-peer-reviewed report summarizes the work done to investigate the in vitro metabolism 
of chloral hydrate and trichloroethanol in mouse liver slices. This research was supported in part 
by Air Force contract number F41624-96-C-9010 and was funded by the Strategic 
Environmental Research and Development Program (SERDP), project CU-115. The animals 
used in this study were handled in accordance with the principles stated in the Guide for the Care 
and Use of Laboratory Animals, Institute of Laboratory Animal Resources, National Research 
Council, National Academy Press, 1996, and the Animal Welfare Act of 1966, as amended. 
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INTRODUCTION 

Chloral hydrate (CH) is a byproduct of water chlorination, softwood pulp bleaching, 

pesticide and plastic manufacture. Although it has been used for many years as a clinical 

sedative, CH is reported to be mutagenic/clastogenic in some in vitro assays (1). Male B6C3F1 

mice exposed to 1 g/L CH in drinking water for 104 weeks had increased liver weights, 

hepatocellular necrosis and an increased incidence of liver tumors (2-4). Trichloroethanol 

(TCOH) is a product of CH metabolism via either an NADPH-dependent alcohol dehydrogenase 

(5) or an NADPH-dependent aldehyde reductase activity (6), followed by uridine diphosphate 

glucuronyl transferase conversion to TCOH-glucuronide. Like CH, TCOH increases haploid / 

non-disjunctional diploid frequencies in Aspergillus nidulans (1). To date, TCOH has not been 

demonstrated to be a rodent hepatocarcinogen. 

Both CH and TCOH are intermediate products of the metabolic degradation of 

trichloroethylene (TCE), a major groundwater contaminant (Figure 1). Significantly, TCE 

induces hepatocellular carcinoma in mice, but not in rats, following chronic oral gavage (7,8). 

This effect has been suggested to be strongly linked to production of trichloroacetic and/or 

dichloroacetic acids (TCA and DCA, respectively) (9-11). Both TCA and DCA are 

hepatocarcinogens in B6C3F1 mice yet they are consistently negative on standard mutagenesis 

assay (reviewed in: 12,13). TCA results from the oxidation of CH by aldehyde dehydrogenase, 

whereas DCA is putatively formed from the reductive dehalogenation of TCA (14,15). 

Significant species metabolic differences exist. Gorecki, et al. (16) report that in humans, CH is 

reduced to TCOH which is then oxidized to TCA. However, rats do not form significant 

amounts of TCA following oral exposure to TCOH (17). Mice form both TCA and DCA from 



exposure to the parent TCE, however recent work from this laboratory has called into question 

the historical estimates of DC A production (18). 
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Figure 1. Trichloroethylene metabolism. 

Proposed metabolic pathway for trichloroethylene (TCE). Arrows represent known biochemical 
transformations. Dotted lines indicate putative pathways. P-450 = cytochrome P-450 mediated 
metabolism. (After ref: 29-31). 

As a major contributor to pollution remediation costs, TCE's tumorigenicity must be 

better understood to form a mechanistically based approach to assessing the risks to human 

health from environmental exposure. Clearly, one approach is to define the rate and abundance 

of metabolite production across species. The purpose of this study was to refine the proposed 

metabolic pathway for TCE in the B6C3F1 mouse liver and to develop tissue-specific estimates 

of metabolic capacity. We used a precision cut liver slice in vitro system to establish metabolic 

rate estimates for CH and TCOH disappearance and subsequent metabolite formation. 



METHODS 

Animals: Male B6C3F1 mice were obtained from Charles River Breeding Laboratories, 

Inc. (Raleigh, NC). Mice were provided with Purina Lab Chow #5008 and softened water ad 

libitum. They were housed 5 mice per plastic cage with hardwood chip bedding and maintained 

on a 12-hour light/dark cycle at constant temperature (22 + 1°C) and humidity (40-60%). 

Animals were euthanized by CC*2 asphyxiation prior to liver excision. 

Liver Slice Incubation: All chemicals were obtained from Sigma Chemical Co. (St. 

Louis, MO) unless otherwise noted and were of analytical grade. Slices were prepared from 

male B6C3F1 mice in Sacks preservation buffer, pH 7.4 ± 0.1, at 4°C, using a Krumdieck Tissue 

Slicer (Alabama Research and Development, Munford AL) and incubated under standard 

conditions as previously described (19-22). Briefly, the slices were loaded on rollers (two slices 

per roller) and placed in 37°C scintillation vials containing 1.7 mL Waymouths MB 752/1 media 

(Gibco Formula #78-5107EC, without phenol red), pH 7.4 ±0.1, supplemented with (g/L): 

NaHC03 (1.3), HEPES (2.38), 1-glutamine (0.350), gentamycin sulfate, 50 mg/mL (1.5 mL), and 

10% Fetal Bovine Serum (Hyclone, Logan UT), and capped with a scintillation vial lid with a Vi" 

hole for gas exchange. Vials were placed in a Dynamic Roller Culture Incubator (Vitron, Tucson 

AZ) and gassed with 95% 02/5% C02- After a two hour pre-incubation, rollers were removed 

from the vials and placed into pre-warmed vials containing the CH (0-5.7 mM) or TCOH (0-6.1 

mM) dosed Waymouths media (pH 7.4) and returned to the roller culture incubator. 

Viability was assessed for each experiment to assess cytotoxicity of CH and TCOH using 

standard enzyme and cation markers (19, 23, 24).   Lactate dehydrogenase (LDH), aspartate 



aminotransferase (AST), and alanine aminotransferase (ALT) levels in culture media and slices 

were determined using a DuPont acaV for LDH and a Kodak Ektachem Analyzer (model 

700XR) for AST and ALT. Acceptable intracellular control enzyme leakage was established at 

less than 25% of total. Intracellular potassium content was measured using an AVL 982-S 

Electrolyte Analyzer (Roswell, GA). The acceptable control level of intracellular potassium 

content was set at greater than 35 mmoles K7g wet weight tissue. If the viability control 

samples did not meet these well accepted literature based standards, the experimental results 

were discarded. 

. Sample Analysis: Vials were harvested at multiple time points to 2 hours. Slices were 

weighed, sonicated in their own media, deactivated (detailed below), and frozen at -20°C 

pending metabolic analysis. For DCA and TCA analysis, samples were heat killed then 

derivitized using dimethylsulfate under acidic conditions, followed by hexane extraction as 

previously described (18, 25). The reaction efficiency (formation of methyl esters) for TCA and 

DCA was 75% and the hexane extraction efficiency was 67%. Samples for CH and free TCOH 

analysis were deactivated in 20% lead acetate and extracted into ethyl acetate (16,18). The ethyl 

acetate extraction efficiency for CH and free TCOH was 98%. Total TCOH was determined 

after acid deactivation and hydrolysis using 18 M H2S04 (200 uL sample + 500 uL acid), 

followed by ethyl acetate extraction. The difference between free TCOH and total TCOH 

measured was negligible. Metabolites were analyzed using a Hewlett-Packard 5890 II gas 

Chromatograph (Avondale, PA) equipped with an electron capture device (GC-ECD) analysis 

(HP 5890) with data collected and integrated through a P.E. Nelson Turbochrome 4 data analysis 

system. 



Metabolie Calculations: Metabolie rates of degradation were determined by measuring CH or 

TCOH removed over time, normalized by liver protein content for each sample. Liver tissue 

protein was determined using the Pierce BCA protein assay protocol (Rockford, IL) using bovine 

albumin as a standard. Zero hour samples were routinely prepared to confirm exposure levels. 

Rates estimates of CH and TCOH loss were calculated for each dose regimen by plotting a best 

fit line to the linear portion of a curve which described the amount of chemical removed per mg 

protein versus time (rate = slope) using SigmaPlot® software (Jandel Scientific; San Rafael, 

CA). Rate estimates were then graphed against CH or TCOH concentration and metabolic rate 

constants (Km and Vmax) calculated by non-linear Michaelis-Menten analysis using Enzfiter™ 

software (Biosoft, Ferguson, MO). Rates were also plotted as a double-reciprocal rate versus 

substrate concentration to verify Km and Vmax using SigmaPlot® software. TCA production 

from CH was calculated and presented in a similar manner using linear rate estimates. 

RESULTS 

Viability parameters for all experimental treatments concentrations of both CH and 

TCOH were well within acceptable limits (data not shown).   Chloral hydrate metabolism was 

-i 

saturable with a Km of 1.1 mM CH and Vmax of 274 nmole CH removed/mg protein*min 

(Figure 2).   Comparable values were determined using double-reciprocal plot analysis (inset 

graph, Figure 2).   Trichloroacetic acid production rate increased linearly with increasing CH 

concentrations up to 5.70 mM (Figures 3), with a maximum TCA production of 30 pmoles TCA 

-i 
produced/mg protein*min . TCOH production appeared to plateau after the 1.84 mM CH dose, 



with a maximum saturable TCOH production of 154 nmoles TCOH produced/mg protein*min 

i 

(Figure 4). DCA was not detected in any sample from CH exposure over the 0.137 mM to 5.70 

mM experimental range. 
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Figure 2. Chloral hydrate metabolism. 

Rates of CH metabolized, expressed as nmoles removed/ mg protein * min"1 were plotted against 
concentration. Symbols represent best fit estimate ± S.E., n=15 data points as described in 
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methods. Inset graph presents the double reciprocal plot of CH rate data (r =0.912). Michaelis- 
Menten constants: Km = 1.1 mM CH, Vmax = 274 nmole CH removed/mg protein*min"1. 

Figure 3. TCA produced from chloral hydrate metabolism. 

Symbols represent pmoles of TCA produced per mg protein versus time for each concentration 
of CH, mean + S.D., n=3. Rates of TCA formation were determined from the linear portion of 
each plot and used to determine metabolic rate constants. Similar calculations were performed 
for TCOH. 



Free TCOH metabolism resulted in a Km of 0.14 mM TCOH and Vmax of 19.9 nmole 

TCOH removed/mg protein*min (Figure 5). Formation of metabolites from TCOH 

degradation is presented in Figure 6.   Trichloroacetic acid production reached its maximum 

saturable rate of 1.4 pmoles TCA produced/mg protein*min" at 2.6 mM TCOH treatment (data 

not shown). The rate of chloral hydrate production remained steady at about 0.13 nmoles CH 

produced/mg protein*min'\   Dichloroacetic acid was not detected from   0-6.1 mM TCOH 

exposure. 
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Figure 4. TCA and TCOH produced from CH metabolism. 

Bar symbols represent production rates TCA and TCOH produced from CH metabolism. 
Amount of CH removed is also presented as circle symbols related to right y-axis. Each is the 
linear rate estimate ± S.E., of n=l 5 samples. 



Figure 5. Trichloroethanol metabolism. 

Rates of TCOH metabolized per mg protein*min"', mean ± S.E., n=15. Inset graph presents the 

double reciprocal plot of TCOH data (r  =0.879). Michaelis-Menten constants: Km = 0.14mM 

TCOH, Vmax = 19.9 nmoles TCOH removed/mg protein min   . 
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Figure 6. Chloral hydrate and TCA produced from TCOH metabolism. 
Bar symbols represent rate of TCA and CH produced from TCOH metabolism. Amount of 
TCOH removed is also presented as the triangle symbol, referenced to right y-axis annotation). 
Data are presented as mean ± S.E., n=15. 

DISCUSSION 

Metabolic rate estimates in B6C3F1 male mouse liver tissue for CH, TCOH degradation 

and production of metabolites were determined using the precision cut liver slice in vitro system. 

We detected no DCA formation from the metabolism of TCOH or CH in mouse liver slices. 

This may indicate that DCA is not formed, or that any DCA formed is rapidly metabolized (18). 

Of the metabolites measured, TCOH was the major product of CH degradation in this system. It 

appears in quantities at least four orders of magnitude greater than does TCA at every CH 

concentration tested. The CH to TCOH path may be saturable, as evidenced in the dose response 



seen in figure 4. By comparison, TCA production did not plateau over the 0-5.70 mM CH range, 

although CH removal clearly had. At the 5.70 mM CH exposure, TCA production was 30.02 

pmoles TCA produced/mg protein min"1. 

Metabolism of TCOH does produce CH, presumably by the "reverse" metabolism of 

TCOH as suggested in Figure 1. The rate of conversion appears to be independent of dose in the 

range of TCOH concentrations we used. A fairly consistent rate of CH formation was observed 

that was at least three orders of magnitude greater than the rates of formation for TCA. 

However, TCA production rates began to plateau at TCOH concentrations greater than 2.6 mM. 

In addition, the maximum observed rate of TCA production from TCOH was at least 20-fold 

lower than was the rate from CH, and the later pathway had not plateaued. This suggests that the 

major contributor to TCA formation is via oxidation of chloral hydrate. If literature suggestions 

that TCA is largely responsible for the tumorigenicity of TCE are correct (10), our results 

suggest that reaction rates of CH to TCA would be critical for interspecies extrapolation. 

TABLE 1. COMPARISON OF TCA:TCOH RATIOS IN RAT PERFUSED LIVER AND 
MOUSE LIVER SLICES. Metabolite values represent amount of TCA or TCOH, in pmoles 
per mg liver tissue protein, following a two hour exposure to the indicated concentrations of CH 
or TCOH in each system. 

Perfused Rat Liver 
Biliary Excretion 

Mouse Liver Slices 

TCA (pmoles) 
TCOH (pmoles) 

CH (0.15mM)     TCOH (0.17rrdvT) 
37                         2.4 

222                       296 

CH (O.UmM)       TCOH C0.1 ImM) 
56.5                         26.2 
264                        19400 

RATIO 
TCA:TCOH 0.17                      0.008 0.21                       0.0014 

Modified from Kawamoto, et al., 1987 (26). Data conversion based on TCA (F.W. = 163.4 
g/mole), TCOH (F.W. = 149.4 g/mole) and 0.15 mg protein/ mg liver tissue after Pravecek and 
Channel, 1995 (24). 



Understanding such species differences in metabolism will help us to understand the 

species-specific tumorigenicity of TCE. As mentioned previously, whole animal exposure 

estimates lack the ability to ascribe metabolic capacity to a specific tissue, such as liver. When 

employed in physiologically based pharmacokinetic (PBPK) computer models, metabolic rates 

are estimated for the target tissue as illustrated in Table 1 which presents data from metabolism 

of TCOH and CH in rat perfused liver as reported by Kawamoto, et al., 1987 (26). The ratio of 

TCA:TCOH resulting from a two hour exposure to equivalent concentrations of CH was in 

good agreement rat vs. mouse liver slice in our study. Similarly, the TCArTCOH ratios from 

TCOH exposure were in fair agreement between the two species. However, observation of the 

absolute molar amounts of TCA or TCOH after two hours is interesting. Mice appear to produce 

significantly greater amounts of each metabolite following CH exposure. However, mice appear 

to be less able to clear TCOH than do rats, a factor that may become significant under chronic 

low-dose exposure conditions. Some have suggested that enterohepatic recirculation may 

contribute to sustained levels of both TCOH and TCA (27). This may force an incremental 

increase in TCA burden from the TCOH-CH-TCA pathway. Neither perfused live nor liver slice 

systems would be able to address this issue directly since each lacks functional enterohepatic 

recirculation. However, if sustained TCA correlate to the observed pattern of liver tumor 

formation (28), our data are consistent with one mechanism of sustaining those levels. 

We have demonstrated tissue specific metabolism of CH and TCOH. The results of this 

study provide added verification of the putative TCE metabolic pathway presented in Figure 1. 

These liver-tissue specific kinetic parameters may be incorporated in the liver compartment of a 

physiologically based pharmacokinetic (PB-PK) model for TCE metabolism to refine the model 

10 



predictions, which at present are based on fitted estimates derived from whole animal exposures. 

The liver slice in vitro system has provided an excellent tool in this instance to study metabolic 

and mechanistic problems of toxicity. 
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